秋季における北極の海氷回復と大気循環の関係

The Relationship between the Arctic Sea-ice Recovery and Atmospheric Circulations in Autumn

地球環境気候学研究室 伊藤 匡史 (510M227):指導教員 立花 義裕 Masashi Ito

Keywords: sea-ice concentration, composite, sea level pressure, turbulent heat flux, temperature flux

1. はじめに

北極海の海氷面積は, 30 年間で約 50%減少してお り,温暖化の影響が示唆されている [Stroeve et al., 2007]. これは,夏季の海氷減少の変化に伴う秋季の 気温や放射等の変化が一要因として考えられている [Screen and Simmonds, 2010].また,秋季の海氷状態 と低気圧活動に関係がみられ [Stroeve et al., 2011], 低気圧活動が海氷生成と関係があることも報告され ている[Inoue and Hori, 2011].

夏季において大気が海氷減少に与える影響は, Ogi et al (2007) 等によって異常な大気循環が海氷を動か す事で,海氷減少を促進させることが知られている. しかしながら,結氷期における大気場と海氷増加の 関係,特に日変動単位での大気と海氷増加の関係は, まだ未解明の部分が多い.そこで本研究では,海氷 が年々減少する中で,海氷増減に寄与している低気 圧活動や総観規模の大気循環に着目し,北極海にお ける海氷増加期の大気循環と海氷増加の関係を大気 場と熱的観点から明らかにする事を目的とする.

2. 使用データ

海氷密接度は, National Snow and Ice Data Center (NSIDC)の Nimbus-7 SMMR 及び DMSP SSM/Iの マイクロ波放射計から算出されたデータを使用した. グリッド間隔は 25km×25km. 解析期間は, 1979 年~ 2010 年である.海面更正気圧,温度,風速,潜熱・顕 熱フラックスには, ECMWF (European Centre for Medium-Range Weather Forecasts)の ERA-Interim 再 解析データを使用した.グリッド間隔は, 1.5°×1.5°. 解析期間は, 1979~2010 年である.

3. 対象領域

研究対象領域は,北緯 70 度以北の北極域全体、及 び太平洋セクター(北緯 70 度~90 度,東経 90 度~ 270 度)と大西洋セクター(北緯 70 度~90 度,東経 270 度~90 度)である.

4. 解析手法

SMMR 及び SSM/I の海氷密接度データより, 1979 年から 2010 年までの海氷減少量が最も顕著な 太平洋セクターの海氷密接度の領域平均を計算し, 各年での最小値とその日付を抽出する.また,10月から12月までの各月での1日時点における同セクターの領域平均された海氷密接度を計算し,各月ごとの海氷密接度値の変動を調べ,実際に海氷が回復している期間を特定する.

ERA-Interim 再解析データの海面更正気圧と SMM/R 及び SSM/I の海氷密接度データ用いて,結氷 期において特定の大気パターンが海氷の回復に影響 を与えているかを確かめる.また,結氷期における 大気場の特性を特定するために,1979年以降におい て海氷増加率が大きい上位5年を抽出して,海氷増 加率が1%以上の日と2%以上の日を対象にコンポジ ット解析を行った.更に,パターン相関法によって 近年における海氷の増大と海面更正気圧コンポジッ トアノマリーのパターンとの関係を調べた.また, 熱的観点から,海から出される熱量と太平洋セクタ ーに流入する温度フラックスを算出した.

5. 結果

5.1 海氷面積の長期トレンド

太平洋セクターの海氷密接度の最小値は.1979 年 では約70%、2010年では約30%となっており、顕著 に減少している(図省略).また,各年において海氷 密接度の最小値を記録した日付は、年々遅くなる傾 向にあった(図省略).つまり、これは融解期が長く なり、その分秋から冬にかけて海氷を生成される期 間が短くなっている事を意味する. さらに 10 月の海 氷は、夏季に海氷が年々減っている事と連動して、 減少している事がわかった. ところが 11 月になると, 10月の海氷の多寡に関わらず面積が80%まで回復す るようになる.この結果から海氷面積の回復は、10 月と11月の間で行われていると考えられる.10月・ 11月における1日あたりの太平洋セクターの海氷密 接度の回復率は、年々大きくなっているが、特に 10 月の海氷増加率が著しく大きい (Figure. 1). した がって、10月の大気循環の変動が、海氷の回復率増 加に影響を与えていると考えられる。また、10月の 海氷増加に伴う熱的影響が大気にも現れると予想さ れる. また, 10月1日時点における海氷密接度と10 月の1日当たりの回復量の相関は、-0.94を示し (Figure. 2), 海氷が夏季に減れば減るほど10月におけ

Figure.1 Daily increment of sea-ice concentration averaged over the Pacific Arctic (blue: October, red: November).

Figure. 2 Time series of standardized sea-ice concentration at 1st on October (blue line) and the recovery rate per day on October (red line).

る海氷の回復量は増加する. つまり, 融解期の長期 化か示唆されている中で, 11 月まで融解期を引きず る事なくほとんどの海氷が10月に結氷している事に なる. これより10月の環境場の何かが原因となって 海氷を生成させると考えられる.

5.2 海面更正気圧コンポジット

海面更正気圧場をコンポジットした気圧傾向は, 1%の場合よりも 2%の方がより顕著であった.(図 省略).また、海面更正気圧の気候値からのコンポジ ット偏差も同様に,海氷増加率が 2%を超える時, 正偏差・負偏差が顕著に現れた (Figure.3a).同様 に海氷増加率が上記の時の海氷増加率は,中央シベ リア〜東シベリア沿岸の海域で大きな値を示した (Figure.3b).

Figure. 3 (a) SLP composite anomaly [hPa] (blue is negative, red is positive). (b) Composite of sea-ice growth rate per day [%/day].

5.3 10月の海面更正気圧トレンド

10月における海面更生気圧のトレンド(図省略)は、極中心の高気圧化とベーリング海やシベリアで低気圧傾向にあることから、近年10月において、高低気圧のコントラストが明瞭化している.

5.4 水平温度フラックス

10月における太平洋セクターに流入する水平温度 フラックスは、若干であるが減少傾向にある(図省 略).近年この領域に入ってくる熱量が減少してい る事が分かった.

6. 考察と結論

太平洋セクターでの海氷の回復は、10月に起こっ ており、他の月に比べ顕著に回復する時期であるこ とが分かった.また1日当たりの海氷増加率は、 年々増加傾向にあり、短期間で急激に増える傾向に あることもわかった.この急激な海氷の回復は、シ ベリア沿岸の海域で顕著である.これは、近年の顕 著な大気偏差パターンの時に引き起こされる傾向に あり、高低気圧場のコントラストによって風が吹く ことで、水平温度フラックスの減少が起こり、更 に海中の熱量が奪われることで、海氷が急激に増加 する傾向にあった.以上、本研究より、近年の10月 の海氷増加と気圧場の間に関係が見いだされた.

7. 引用文献

- Inoue, J., and M. Hori, 2011: Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? *Geophys. Res. Lett.*, 38, L12902, doi:10.1029/2011GL047696.
- [2] Ogi.M, and J.M.Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation, *Geophys. Res. Lett.*, 34, L12705, doi:10.1029/2007GL029897.
- [3] Screen, J. A., and I. Simmonds, 2010: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification, Geophys. Res.Lett., **37**, No. 16, L16707 10.1029/2010GL044136.
- [4] Simmonds, I., C. Burke, and K. Keay (2008), Arctic climate change as manifest in cyclone behavior, J. Clim., 21, 5777–5796, doi:10.1175/2008JCLI2366.1.
- [5] Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. *Geophys. Res. Lett.*, 34, L09501, doi:10.1029/2007GL029703
- [6] Stroeve, J, C., M.C.Serreze, A, Barrett. and D, N, King, 2011: Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. *Tellus.*, 4, 63A, 653-633.